

Grid Applications of Redox Flow Battery (RFB) System

World largest operational flow battery system in Hokkaido, Japan (As of May, 2017)

RFB installation site
(Minamihayakita S/S)

9 electric power
companies
across Japan

Tohoku
Hokuriku

Chugoku

Chubu

Kansai

Kyushu

Shikoku

Okinawa

Tanks, Pumps, PCS (1st Floor)

Project Overview

- » System Output and Capacity 15 MW × 4 h (60 MWh)
- » Applications
 - (1) Short term frequency fluctuation controls
 - Free-governor control mode
 - Load frequency control
 - Renewable generation smoothing
 - (2) Long term frequency fluctuation control
 - (3) Excess renewable power management
- » Start of Operation December, 2015
- » Project Location
 Minamihayakita Substation, Hokkaido (Japan)
- » Collaborating Partner Hokkaido Electric Power Co., Inc.

Our battery system is in operation at the 66 kV side of the substation (Primary side: 275 kV).

Grid Applications of Redox Flow Battery (RFB) System

RFB System Integration in Transmission and Distribution Networks in California, USA

» System Output and Capacity 2 MW × 4 h (8 MWh)

» Applications

- Frequency control
- Voltage control
- Excess renewable power management
- Ancillary services

» Start of Operation March, 2017

» Project Location San Diego, California (USA)

» Collaborating Partner San Diego Gas & Electric Company (SDG&E)

UL Safety Certification

First company to achieve UL 1973 Flow Battery certification

Cell stacks of our redox flow battery obtained UL1973: the safety standard in USA for large-scale stationary batteries.

Redox Flow Battery System for Wind Farm Output Stabilization in Tomamae, Hokkaido (Japan)

» System Output and Capacity

4 MW×1.5 h (6 MWh)

» Application

- Renewable generation smoothing
- Stabilization of the system power output

» Project Term

From 2005 to 2008

» Project Location

Tomamae, Hokkaido (Japan)

Behind-the-meter Applications of Redox Flow Battery (RFB) System

Applications for Load Leveling and Emergency Power Supply

- » System Output and Capacity 500 kW×6 h (3 MWh)
- » Applications
 - (1) Grid-connected Mode
 - Peak reduction
 - Excess renewable power management
 - (2) Island Mode
 - Primary voltage source (Black start)
- » Start of Operation January, 2015
- » Project Location Tokyo, Japan
- » Collaborating Partner Obayashi Corporation

Redox Flow Battery (500 kW×6 h)

Microgrid Demonstration System

- » System Output and Capacity 125 kW×6 h (750 kWh)
- » Applications
 - Renewable generation smoothing
 - Energy cost optimization
 - Demand response
 - Stand-alone operation
- » Start of Operation February, 2017
- » Project Location Taipei, Taiwan
- » Collaborating Partner
 Taiwan Power Research Institute

Behind-the-meter Applications of Redox Flow Battery (RFB) System

Factory Microgrid with RFB

» System Output and Capacity

Plant Model: 500 kW×5 h (2,500 kWh) Container Model: 500 kW×4 h (2,000 kWh)

» Applications

- » Start of Operation July, 2012
- » Project Location Yokohama, Japan
- » System Configuration

Principle of Redox Flow Battery (RFB) System - Key Features -

Concept

Redox: Reduction & Oxidation reactions Flow: Electrolyte flows through electrochemical cells

System Configuration

Feature 1: Accurate Monitoring of SOC

» The state of charge (SOC) can be monitored on a real time basis. It is directly measured during operation by electromotive force (voltage) at the monitoring cell.

Easy monitoring & management of the available capacity even in a complex operation

Feature 2: Fire Safety

- » Our redox flow battery consists of non-flammable materials and electrolyte.
- » Electrolyte: Vanadium sulphate aqueous solution
 - Non-flammable liquid
 - The mixing of positive and negative electrolyte does not result in ignition.
- » Cell stacks and pipes: Polyvinyl chloride (PVC)
 - Non-explosive (Ignition point: 455°C)
 - High self-extinguishing capability

Extremely low possibility of fire resulting from the flow battery materials and electrolyte

Feature 3: Long-life operation

» No significant deposition of solution through chemical reactions in the Vanadium redox flow battery

Long design lifetime of 20 years & Semi-permanent use of electrolyte

Feature 4: No operational constraint on cycle life

- » No constraint of system operation on depth of discharge (DoD) and number of cycles
 - Depth of Discharge: 100%
 - Unlimited number of cycles over lifetime

Highly capable of longlife multiple-cycle operations

Product Lineup & Layout

Overview

» Cost Reduction

The containerization of the flow battery reduces the cost of transportation and local commissioning.

» Lifetime & Cycle-basis Economic Values

Benefits stacking from multiple battery services by unlimited number of cycles over its long lifetime

» Flexible Combination of Output & Capacity

Power intensive mode: Up to 200% Design flexibility: Easy expansion of capacity

» Reduction in Installation Area

The two-storey design and increase in battery output reduce the installation area of our flow battery system.

Product Lineup

Basic Specification per Module	Output	Capacity	Dimensions	Weight
3 hours model	AC 250 kW	AC 750 kWh	6.1m×6.1m×6m	120 t
4.5 hours model	AC 250 kW	AC 1,125 kWh	9.1m×6.1m×6m	170 t
6 hours model	AC 250 kW	AC 1,500 kWh	12.2m×6.1m×6m	220 t

Example of System Layout

Example: 1 MW × 6h (6 MWh) Model

System Size & Installation Area

Output	Capacity	Installation Area	
1MW	3MWh	21m×17m	
1MW	4.5MWh	21m×23m	
1MW	6MWh	21m×29m	
10MW	30MWh	81m×34m	
10MW	45MWh	112m×34m	
10MW	60MWh	142m×34m	

Tel: +81 3 6406 2648 (Tokyo) +81 6 6466 5590 (Osaka) Address: 1-1-3, Shimaya, Konohana-ku, Osaka, Japan

URL: http://global-sei.com/

